Doppeltperiodische Funktionen

Doppeltperiodische Funktionen

Doppeltperiodische Funktionen, solche Funktionen, die zwei verschiedene Perioden besitzen, also den Gleichungen: f(x + w) = f(x) und f(x + w') = f(x) genügen. Das Verhältnis der Perioden w : w' darf nicht reell sein. Außer w und w' existieren noch unendlich viele andre Perioden. w und w' heißen primitiv, wenn sich alle andern Perioden in der Form nw + n'w' darstellen lassen, wo n und n' ganze Zahlen sind. Beispiele von doppeltperiodischen Funktionen sind die elliptischen Funktionen und die Weierstraßsche p-Funktion (s. Sigmafunktionen).


Literatur: [1] Bobek, Einleitung in die Theorie der elliptischen Funktionen, Leipzig 1884. – [2] Biermann, Theorie der analytischen Funktionen, Leipzig 1887. – [3] Krause, Theorie der doppeltperiodischen Funktionen einer Veränderlichen, I-II, Leipzig 1895–97.

Wölffing.


http://www.zeno.org/Lueger-1904.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • doppeltperiodische Funktion — doppeltperiodische Funktion,   Mathematik: periodische Funktionen, elliptische Funktionen …   Universal-Lexikon

  • Elliptische Integrale und Funktionen — Elliptische Integrale und Funktionen. Kommt in einem Integral unter dem Integralzeichen eine Quadratwurzel aus einem Ausdruck 3. oder 4. Grades in x vor, so wird dasselbe als ein elliptisches Integral bezeichnet. Man unterscheidet hierbei drei… …   Lexikon der gesamten Technik

  • Elliptische Funktionen — Im mathematischen Teilgebiet der Funktionentheorie sind elliptische Funktionen doppeltperiodische meromorphe Funktionen. „Doppeltperiodisch“ bedeutet, dass es zwei komplexe Zahlen ω1,ω2 gibt, die keine reellen Vielfachen voneinander sind, so dass …   Deutsch Wikipedia

  • Augustin Louis Cauchy — [ogysˈtɛ̃ lwi koˈʃi] (* 21. August 1789 in Paris; † 23. Mai 1857 in Sceaux) war ein französischer Ma …   Deutsch Wikipedia

  • Elliptische Funktion — Im mathematischen Teilgebiet der Funktionentheorie sind elliptische Funktionen doppeltperiodische meromorphe Funktionen. „Doppeltperiodisch“ bedeutet, dass es zwei komplexe Zahlen ω1,ω2 gibt, die linear unabhängig im reellen Vektorraum sind, so… …   Deutsch Wikipedia

  • Weierstraßsche elliptische Funktion — Im mathematischen Teilgebiet der Funktionentheorie sind elliptische Funktionen doppeltperiodische meromorphe Funktionen. „Doppeltperiodisch“ bedeutet, dass es zwei komplexe Zahlen ω1,ω2 gibt, die keine reellen Vielfachen voneinander sind, so dass …   Deutsch Wikipedia

  • Weierstraßsche p-Funktion — Im mathematischen Teilgebiet der Funktionentheorie sind elliptische Funktionen doppeltperiodische meromorphe Funktionen. „Doppeltperiodisch“ bedeutet, dass es zwei komplexe Zahlen ω1,ω2 gibt, die keine reellen Vielfachen voneinander sind, so dass …   Deutsch Wikipedia

  • Integralrechnung — Integralrechnung, die notwendige Ergänzung zur Differentialrechnung (s. d.). Während diese zu einer gegebenen Funktion den Differentialquotienten finden lehrt, besteht die Hauptaufgabe der I. darin, die Funktion zu finden, deren… …   Meyers Großes Konversations-Lexikon

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”