Biegungslinie

Biegungslinie

Biegungslinie, auch Durchbiegungslinie, elastische Linie, Biegungspolygon genannt, heißt in der Statik der Bauwerke die Linie, in die infolge der Elastizität des Baustoffes die Achse eines ursprünglich geradlinigen Balkenträgers unter dem Einfluß von belaufenden Kräften übergeht. Die größte Abweichung der Biegungslinie von der ursprünglichen Trägerachse heißt Biegungspfeil. Auch bei krummlinigen oder Bogenträgern kann man von Biegungslinie sprechen. Man verlieht darunter die Kurve, die man erhält, wenn man die elastischen Verschiebungen, welche die Trägerachse in irgend einer Richtung ausführt, von einer auf dieser Richtung senkrecht stehenden Linie aus aufträgt. Die Biegungslinie ist teils von den Biegungsmomenten, teils von den Querkräften abhängig. Man bestimmt am einfachsten beide Einflüsse gesondert und addiert sie nachher.

Einfluß der Biegungsmomente: Steht ein ursprünglich rechteckiges Balkenelement unter dem Einfluß eines Biegungsmomentes M, so nimmt es eine trapezförmige Gestalt an (vgl. Fig. 1). Die ursprünglich parallel zueinander laufenden Querschnitte schneiden sich jetzt im Punkte C. Die Entfernung ρ dieses Punktes von der Balkenachse ist der Krümmungshalbmesser der Biegungslinie. Nach der Biegungstheorie ist die Spannung in der äußersten (untersten) Faser σ = eM/J, wenn J das Trägheitsmoment des Querschnitts bedeutet. Die Verlängerung dieser Faser ist nach der Theorie der Elastizität gleich σ/Edx, wenn E den Elastizitätsmodul bedeutet. Diese Verlängerung verhält sich aus geometrischen Gründen zu e wie dx zu ρ; folglich ist


Biegungslinie

Da die Biegungslinie eine sehr flache Kurve ist, so darf man 1/ρ durch d2y/dx2 ersetzen und findet dadurch die Differentialgleichung der Biegungslinie


Biegungslinie

[8] Sind M und J als Funktionen von x gegeben, so kann man hiernach die Gleichung der Biegungslinie und daraus den Biegungspfeil berechnen.

Die Differentialgleichung eines Seilpolygons für verteilte Belastung lautet:

d2y/dx2 = p/h,

wenn p die Belastungsgröße und h die Polweite bezeichnet. Hieraus folgt, daß man die Biegungslinie auch als Seilpolygon auffassen und zeichnen kann: Man betrachtet die Biegungsmomente als Belastungen, mit andern Worten, die Momentenfläche als Belastungsfläche, und wählt das Produkt EJ als Polweite. Bei veränderlichem J bekommt man ein Kräftepolygon mit veränderlichem Pole (s. Summationspolygon). Zeichnet man die Momentenfläche mit der Polweite H und verwandelt sie, um das zweite Kräftepolygon zu erhalten, auf die Balis a, so ist p = M:Ha. Man muß daher h = EJ:Ha machen, wenn man die Biegungslinie in richtiger Größe erhalten will. Da jedoch die Biegungslinie, um deutlich zu werden, verzerrt gezeichnet werden muß, so nimmt man h stets viel kleiner an. Das Verzerrungsverhältnis ist alsdann gleich: EJ:Hah.

Einfluß der Querkräfte. Unter dem Einfluß der Querkräfte Q gehen die ursprünglich rechteckigen Balkenelemente in parallelogrammförmige über (Fig. 2). Zwei um dx voneinander entfernte Querschnitte verschieben sich gegenseitig um die Strecke dy = Qdx:GF', worin G den Gleitmodul und F' eine Fläche bedeutet, die stets kleiner ist als die Querschnittsfläche F des Balkens. (Bei rechteckigem Querschnitt ist F' = 5/6 F, bei kreisförmigem = 27/32 F, bei I-Querschnitten gleich der Fläche des Steges). Daraus folgt als Gleichung der Biegungslinie

dy/dx = Q/GF' oder da Q = dM/dx, y = M/GF'.

Ist die Momentenfläche mit der Polweite H gezeichnet, so hat man demnach ihre Ordinaten einfach mit H:GF' zu multiplizieren, um den Einfluß der Querkräfte auf die Biegungslinie zu erhalten. Handelt es sich nicht darum, die wirklichen Durchbiegungen eines Balkens zu berechnen (wie es z.B. bei Belastungsproben geschieht), sondern dient die Biegungslinie als Hilfsmittel zur statischen Berechnung von Bauwerken (z.B. von durchlaufenden Balken), so kann der Einfluß der Querkräfte in der Regel vernachlässigt werden.

Soll die Biegungslinie eines Fachwerkträgers berechnet werden, so ersetzt man bei parallelen Gurtungen und einfachem Strebenzuge J durch 1/2Fgh2 und GF' durch EFs cos α sin g2α, worin Fg den Querschnitt der Gurtung, h die Fachwerkshöhe, Fs den Querschnitt der Strebe und α ihren Neigungswinkel bezeichnet. Bei veränderlichen Querschnitten werden passende Mittelwerte eingeführt. Bei mehrfachem Strebenzug ist Fs entsprechend zu multiplizieren. Ist die Fachwerkshöhe veränderlich, so ist in der Regel ein zeichnerisches Verfahren vorzuziehen. Der Formänderungswinkel für einen einzelnen Fachwerksstab ist Ms : EFa2 (M = Drehpunktsmoment, s = Stablänge, F = Stabquerschnitt, a = Abstand des Stabes vom Drehpunkte). Man betrachtet am besten die M als Kräfte, die in den Drehpunkten angreifen, und setzt sie durch ein Seilpolygon zusammen, wobei man die Größen EFa2 : s als Polweiten verwendet. Da die Drehpunkte der Streben meist außerhalb der Spannweite oder gar unendlich fern liegen, so ersetzt man deren Kräfte gewöhnlich durch je zwei in der Nähe des betreffenden Faches liegende Kräfte. In manchen Fällen darf der Einfluß der Streben vernachlässigt werden, was die Zeichnung wesentlich erleichtert. Ein andres Verfahren besteht darin, daß man die Formänderungswinkel zahlenmäßig berechnet, für jeden Knotenpunkt der geradlinigen Gurtung addiert und die Summen, als Kräfte betrachtet, durch ein Seilpolygon zusammensetzt. Auch das Williotsche Formänderungspolygon sowie die Sätze von den virtuellen Verschiebungen und von den Elastizitätsellipsen können zur Bestimmung der Biegungslinie eines Fachwerkträgers benutzt werden.

Soll die Durchbiegung eines Balkens an einer bestimmten Stelle für veränderliche Belastungen berechnet werden, so zeichnet man am besten die Biegungslinie für eine an dieser Stelle angreifende Einzellast. Dann stellt diese Linie nach dem Gesetze von der Gegenseitigkeit der Formänderungen die Einflußlinie für die Durchbiegung des Balkens dar.


Literatur: [1] Ritter, W., Anwendungen der graphischen Statik, 1. Teil, 4. Kap., und 2. Teil, 3. Kap., Zürich 1888–90. – [2] Müller-Breslau, Graphische Statik der Baukonstruktionen, 2. Bd., Leipzig 1892. – [3] Bach, C., Elastizität und Fertigkeit, 4. Aufl., Berlin 1902. – [4] Land, R., Zeitschr. für Bauwesen 1894, S. 611. – [5] Fopp I, A., Vorlesungen über technische Mechanik, Bd. 2 und 3, Leipzig 1900.

(W. Ritter) Roth.

Fig. 1.
Fig. 1.
Fig. 2.
Fig. 2.

http://www.zeno.org/Lueger-1904.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Durchbiegung — (sagging or hogging; flexion; flessione) im weiteren Sinne die Größe der infolge von Krafteinwirkungen bei einem (stab oder plattenförmigen) Körper sich ergebenden Änderung des Abstands seiner Punkte von einer Geraden oder Ebene, die man sich… …   Enzyklopädie des Eisenbahnwesens

  • Fachwerke, durchlaufende — Fachwerke, durchlaufende. (Graphische Berechnung.) Zur statischen Berechnung durchlaufender Fachwerke verwendet man meistens die Verfahren und Regeln, die bei der Berechnung durchlaufender Balken (s. Bd. 1, S. 513) üblich sind. Man zeichnet die… …   Lexikon der gesamten Technik

  • Gelenkträger [1] — Gelenkträger (graphische Berechnung). Der Mittelteil G G des in Fig. 1 dargestellten Gelenkträgers ist in statischer Beziehung ein einfaches Fachwerk und nach den für gewöhnliche Fachwerksbalken üblichen Methoden zu berechnen. (Vgl.… …   Lexikon der gesamten Technik

  • Balken, durchlaufende — (kontinuierliche). Durchlaufende oder kontinuierliche Balken heißen solche Balken (s.d.), die ungetrennt über mehr als eine Oeffnung reichen. Formeln für dieselben bei beliebiger Belastung sind unter Balken, Biegung, Einsenkung, Elastische Linie …   Lexikon der gesamten Technik

  • Bogen [3] — Bogen (Bogenfachwerke). Graphische Berechnung. Zur graphischen Berechnung von Bogenträgern verwendet man in neuerer Zeit meistens Einflußlinien (s.d.). Wenn die vorgeschriebene Verkehrslast wie bei Eisenbahnbrücken aus einer Reihe von… …   Lexikon der gesamten Technik

  • Bogen- und Hängeträger — (arches and suspension girders; poutres en arcs et poutres suspendues; travi in arco et travi sospesi), Tragwerke, die dadurch gekennzeichnet sind, daß auch bei lotrechter Belastung in ihren Auflagerpunkten schief gerichtete Kräfte auftreten,… …   Enzyklopädie des Eisenbahnwesens

  • Biegelinie — Eine Biegelinie (auch Biegungslinie, Durchbiegungslinie, elastische Linie) ist eine mathematische Kurve, die die Verformung eines Balkens bei Biegung beschreibt. Es ist in der Statik der Bauwerke die Linie, in die infolge der Elastizität des… …   Deutsch Wikipedia

  • Achse [2] — Achse eines Stabes Diejenige Linie, welche die Schwerpunkte aller senkrecht zu ihr gedachten ebenen Schnitte (Querschnitte) durch den Stab enthält. Ist die Achse eine gerade Linie, so hat man es mit einem geraden Stab zu tun. Neben diesem kommen… …   Lexikon der gesamten Technik

  • Biegung — nennt man solche Verschiebungen der Teilchen von Stäben oder Platten, durch welche Formänderungen ihrer Achse oder Achsschicht (s.d. und Achse eines Stabes) bedingt sind. An dieser Stelle soll die elastische Biegung von Stäben zur Sprache kommen… …   Lexikon der gesamten Technik

  • Biegungspfeil — wird häufig die größte Einsenkung (Durchbiegung) f der Achse eines gebogenen Stabes genannt. Der Biegungspfeil im Augenblicke des Bruchs heißt auch Bruchpfeil (s. Biegungselastizität, Biegungsarbeit, Biegungslinie, Einsenkung, Balken, einfache).… …   Lexikon der gesamten Technik

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”